Productivity & OrganizationUpdated 12/28/2025
🔮
Video Processor
Download and process videos from YouTube and other platforms. Supports video download, audio extraction, format conversion (mp4, webm), and Whisper transcription. Use when user mentions YouTube download, video conversion, audio extraction, transcription, mp4, webm, ffmpeg, yt-dlp, or whisper transcription.
Quick Usage
Copy this into your Claude prompt
> Please use @skills/video-processor/SKILL.md to ...
# Video Processor ## Instructions This skill provides comprehensive video processing utilities including YouTube video download, audio extraction, format conversion, and audio transcription using yt-dlp, FFmpeg, and OpenAI's Whisper model. ### Prerequisites **Required tools** (must be installed in your environment): - **yt-dlp**: Video downloader for YouTube and thousands of other sites ```bash # Install via pip pip install -U yt-dlp # Verify installation yt-dlp --version ``` - **FFmpeg**: Multimedia framework for video/audio processing ```bash # macOS brew install ffmpeg # Ubuntu/Debian apt-get install ffmpeg # Verify installation ffmpeg -version ``` - **OpenAI Whisper**: Speech-to-text transcription model ```bash # Install via pip pip install -U openai-whisper # Verify installation whisper --help ``` **Python packages** (included in script via PEP 723): - click (CLI framework) - ffmpeg-python (Python wrapper for FFmpeg) - yt-dlp (video downloader) ### Workflow Use the `scripts/video_processor.py` script for all video processing tasks. The script provides a simple CLI with the following commands: #### 0. **Download Video from YouTube or Other Platforms** (NEW!) Download videos from YouTube and thousands of other supported websites: ```bash # Download video uv run .claude/skills/video-processor/scripts/video_processor.py download "https://youtube.com/watch?v=..." output.mp4 # Download audio only (as MP3) uv run .claude/skills/video-processor/scripts/video_processor.py download "https://youtube.com/watch?v=..." --audio-only # Show video info without downloading uv run .claude/skills/video-processor/scripts/video_processor.py download "https://youtube.com/watch?v=..." --info # Download with subtitles uv run .claude/skills/video-processor/scripts/video_processor.py download "https://youtube.com/watch?v=..." output.mp4 --subtitle ``` Options: - `--audio-only`: Download audio only (extracts to MP3) - `--subtitle`: Download and embed subtitles (supports en, zh-Hans, zh-Hant) - `--info`: Show video information without downloading - `--format`: Specify video format preference (default: best quality) #### 1. **Extract Audio from Video** Extract the audio track from a video file: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py extract-audio input.mp4 output.wav ``` Options: - `--format`: Output audio format (default: wav). Supports: wav, mp3, aac, flac - Output is suitable for transcription or standalone audio use #### 2. **Convert Video to MP4** Convert any video file to MP4 format: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py to-mp4 input.avi output.mp4 ``` Options: - `--codec`: Video codec (default: libx264). Common options: libx264, libx265, h264 - `--preset`: Encoding speed/quality preset (default: medium). Options: ultrafast, fast, medium, slow, veryslow #### 3. **Convert Video to WebM** Convert any video file to WebM format (web-optimized): ```bash uv run .claude/skills/video-processor/scripts/video_processor.py to-webm input.mp4 output.webm ``` Options: - `--codec`: Video codec (default: libvpx-vp9). Options: libvpx, libvpx-vp9 - WebM is optimized for web playback and streaming #### 4. **Transcribe Audio with Whisper** Transcribe audio or video files to text using OpenAI's Whisper model: ```bash # Transcribe video file (audio will be extracted automatically) uv run .claude/skills/video-processor/scripts/video_processor.py transcribe input.mp4 transcript.txt # Transcribe audio file directly uv run .claude/skills/video-processor/scripts/video_processor.py transcribe audio.wav transcript.txt ``` Options: - `--model`: Whisper model size (default: base). Options: - `tiny`: Fastest, lowest accuracy (~1GB RAM) - `base`: Fast, good accuracy (~1GB RAM) **[DEFAULT]** - `small`: Balanced (~2GB RAM) - `medium`: High accuracy (~5GB RAM) - `large`: Best accuracy, slowest (~10GB RAM) - `--language`: Language code (default: auto-detect). Examples: en, es, fr, de, zh - `--format`: Output format (default: txt). Options: txt, srt, vtt, json **Transcription workflow:** 1. If input is video, FFmpeg extracts audio to temporary WAV file 2. Whisper processes the audio file 3. Transcription is saved in requested format 4. Temporary files are cleaned up automatically #### 5. **Combined Workflow Example** Process a video end-to-end: ```bash # 1. Extract audio for analysis uv run .claude/skills/video-processor/scripts/video_processor.py extract-audio lecture.mp4 lecture.wav # 2. Transcribe to SRT subtitles uv run .claude/skills/video-processor/scripts/video_processor.py transcribe lecture.mp4 lecture.srt --format srt --model small # 3. Convert to web format uv run .claude/skills/video-processor/scripts/video_processor.py to-webm lecture.mp4 lecture.webm ``` ### Key Technical Details **FFmpeg and Whisper Integration:** - FFmpeg doesn't transcribe audio itself - it prepares audio for external transcription - The workflow is: Extract audio (FFmpeg) → Transcribe (Whisper) → Optional: Re-integrate with video - FFmpeg can pipe audio directly to Whisper for real-time processing (advanced use case) **Audio Format for Transcription:** - Whisper works best with WAV or MP3 formats - Sample rate: 16kHz is optimal (script handles conversion automatically) - The script extracts audio with optimal settings for Whisper **Output Formats:** - **txt**: Plain text transcript - **srt**: SubRip subtitle format (includes timestamps) - **vtt**: WebVTT subtitle format (web standard) - **json**: Detailed JSON with word-level timestamps ### Error Handling The script includes comprehensive error handling: - Validates input files exist - Checks FFmpeg and Whisper are installed - Provides clear error messages for missing dependencies - Handles temporary file cleanup on errors ### Performance Tips - Use `tiny` or `base` models for quick drafts - Use `small` or `medium` for production transcriptions - Use `large` only when maximum accuracy is required - For long videos, consider extracting audio first, then transcribe in segments - WebM conversion with VP9 takes longer but produces smaller files ## Examples ### Example 1: Quick Video to MP4 Conversion User request: ``` I have an AVI file from my old camera. Can you convert it to MP4? ``` You would: 1. Use the to-mp4 command with default settings: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py to-mp4 old_video.avi output.mp4 ``` 2. Confirm the conversion completed successfully 3. Inform the user about the output file location ### Example 2: Extract Audio and Transcribe User request: ``` I recorded a lecture video and need a transcript. Can you extract the audio and transcribe it? ``` You would: 1. First extract the audio: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py extract-audio lecture.mp4 lecture.wav ``` 2. Then transcribe using the base model (good balance of speed/accuracy): ```bash uv run .claude/skills/video-processor/scripts/video_processor.py transcribe lecture.mp4 transcript.txt --model base ``` 3. Share the transcript.txt file with the user ### Example 3: Create Web-Optimized Video with Subtitles User request: ``` I need to put this video on my website with subtitles. Can you help? ``` You would: 1. Convert to WebM for web optimization: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py to-webm presentation.mp4 presentation.webm ``` 2. Generate SRT subtitle file: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py transcribe presentation.mp4 subtitles.srt --format srt --model small ``` 3. Inform user they now have: - presentation.webm (web-optimized video) - subtitles.srt (subtitle file for embedding) ### Example 4: High-Quality Transcription with Language Specification User request: ``` I have a Spanish interview video that needs an accurate transcript for publication. ``` You would: 1. Use a larger model with language specified for best accuracy: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py transcribe interview.mp4 transcript.txt --model medium --language es ``` 2. Optionally create SRT for review: ```bash uv run .claude/skills/video-processor/scripts/video_processor.py transcribe interview.mp4 transcript.srt --format srt --model medium --language es ``` 3. Review the transcript with the user and make any necessary corrections ### Example 5: Batch Processing Multiple Videos User request: ``` I have a folder of training videos that all need to be converted to WebM and transcribed. ``` You would: 1. List all video files in the directory: ```bash ls training_videos/*.mp4 ``` 2. For each video file, run the conversion and transcription: ```bash # For each video: video1.mp4, video2.mp4, etc. uv run .claude/skills/video-processor/scripts/video_processor.py to-webm training_videos/video1.mp4 output/video1.webm uv run .claude/skills/video-processor/scripts/video_processor.py transcribe training_videos/video1.mp4 output/video1.txt --model base # Repeat for each file ``` 3. Confirm all conversions and transcriptions completed 4. Provide summary of output files ## Summary The video-processor skill provides a unified interface for common video processing tasks: - **Audio extraction**: Extract audio tracks in various formats - **Format conversion**: Convert to MP4 (universal) or WebM (web-optimized) - **Transcription**: Speech-to-text with multiple output formats - **Flexible**: CLI arguments for model selection, language, and output formats All operations are handled through a single, well-documented script with sensible defaults and comprehensive error handling.
Metadata
Author
I
iamzhihuixTags
productivityorganizationworkflowvideoprocessor
License
Apache 2.0Actions
